ACS **APPLIED** MATERIALS
EXINTERFACES

$Co₃O₄@MWCNT$ Nanocable as Cathode with Superior Electrochemical Performance for Supercapacitors

Xiaowei Wang,[†] Minxia Li,[†] Zheng Chang,[†] Yaqiong Yang,[†] Yuping Wu,^{*,†,‡} and Xiang Liu^{*,‡}

† New Energy and Materials Laboratory (NEML), Department of Chemistry & Shanghai Ke[y L](#page-4-0)aboratory of Molecul[ar C](#page-4-0)atalysis and Innovative Materials, Fudan University, Shanghai 200433, China

‡ College of Energy, Nanjing Tech University, Nanjing 211816, Jiangsu Province, China

S Supporting Information

[AB](#page-4-0)STRACT: [Using a simp](#page-4-0)le hydrothermal procedure, cobalt oxide $(Co₃O₄)$ with preferred orientation along (220) planes is in situ prepared and coated on MWCNT. The prepared $Co₃O₄(@MWCNT)$ nanocable shows superior electrochemical performance as cathode material for aqueous supercapacitors in 0.5 M KOH solution. Its redox peaks retain the well-defined shapes even when the scan rate increases to 200 mV/s. Its specific capacitance is high, 590 F/g at 15 A/g and 510 F/g even at 100 A/g within the potential range from −0.2 to 0.58 V (vs SCE). There is no capacitance fading after 2000 full cycles. This excellent performance is superior to the pristine and the reported Co_3O_4 , which is ascribed to the unique nanocable structure with orientation.

KEYWORDS: supercapacitor, cathode, $Co₃O₄(@MWCNT)$, nanocable, rate performance

ENTRODUCTION

Recently, increasingly serious energy shortages, environmental pollution from economic development, and the increasing population have stimulated unremitting research efforts into renewable energies such as solar and wind energy.¹ However, the supply and demand for these renewable energy sources fluctuates with time and season. Therefore, the [s](#page-4-0)tability of power supply from these energy sources should be adjusted by energy storage systems to meet the frequent demanding changes.^{1,2} Efficient energy storage systems are urgently needed to satisfy the needs of modern society and ecological concern[s.](#page-4-0)[3](#page-4-0)−⁵ Lithium ion batteries and supercapacitors, as two major devices for electrochemical energy storage, have provided [so](#page-4-0)lutions in alleviating the severe situation.^{6,7} In comparison with lithium ion batteries, supercapacitors or electrochemical capacitors are superior in such aspe[cts](#page-4-0) as high power density, fast charge/discharge processes, excellent cycling behavior, and environmental friendliness.⁸

Metal oxides/hydroxides and conducting polymers are wellexplored as electrode materials with high c[ap](#page-4-0)acitance for supercapacitors, since their pseudocapacitance is much higher than that of the traditional electrical double-layer capacitance ascribed to the reversible faradic redox reactions, which are fast.9[−]¹¹ Transition metal oxides are widely studied due to variable oxidation states of metal ions which facilitate redox tra[ns](#page-4-0)i[tio](#page-4-0)ns and higher charge storage within the potential range of water decomposition. $RuO₂$ has been investigated as a highly suitable option featuring very good capacitive performance, but its relatively high cost and environmentally poisonous nature have triggered the exploration of lower-cost materials with comparable/superior performance and environmental affordability.¹²

Among the transition metal oxides, $Co₃O₄$ is found to be one of pro[m](#page-4-0)ising alternatives owing to its high theoretical specific capacitance, good redox performance, controllable size and shape, and structural identities. As the capacitance is directly linked to surface properties, its electrochemical performance is greatly influenced by any change related to the surface morphology of this electroactive material.^{13,14} In addition, during the ionic insertion and extraction processes, the particle aggregation is severe, and volume expans[ion/c](#page-4-0)ontraction is large. As a result, electrode pulverization and loss of interparticle contact take place. These result in a large capacitance loss and poor cycling stability.15,16 A variety of appealing strategies have been applied to tackle these serious fading problems, including the preparation [of u](#page-4-0)nique nano/ microstructures such as nanotubes, 17 nanowires, 14 nanoparticles (NPs), nanorods, and octahedral cages. In the meantime, the synthesis of carbon-ba[sed](#page-4-0) $Co₃O₄$ na[no](#page-4-0)composites seems to be a preferable direction.^{15,18−20} To our special attention, graphene material/metal oxide composites with diverse morphologies have recently be[en ut](#page-4-0)i[liz](#page-4-0)ed as advanced electrode materials for supercapacitors.^{21,22} Also, research on carbon nanotubes/metal oxides composites for supercapacitor

```
Received: September 12, 2014
Accepted: January 15, 2015
Published: January 15, 2015
```


 a (a) Acid treatment: MWCNTs were dispersed in 6 M HNO₃ for 2 h with sonication to remove the impurities and endow the surface with hydrophilic groups such as $-OH$ and $-COOH$. (b) Coating Co₃O₄ on MWCNT: the acid-treated MWCNTs were immersed into an aqueous solution of $Co(Ac)_2$, and ammonia solution (NH₃·H₂O, 25%) was dropwise added into the mixture solution. Then, the solution was transferred into a Teflon-lined stainless steel autoclave and heated at 150 °C for 5 h. (c) After drying at 80 °C for 12 h, a hybrid of Co₃O₄ crystal coating layer on MWCNT was obtained and then calcined at 250 °C in air atmosphere for 2 h.

applications have been reported.²³⁻²⁶ These composites have demonstrated significant improvements in electrochemical prop[e](#page-4-0)rties as compared with the i[nd](#page-4-0)ividual constituents.^{17,18} However, the problems of rate capability and stable cycling have not been completely solved.

In this study, we designed a $Co₃O₄(\partial MWCNT)$ nanocable by using multiwall carbon nanotubes (MWCNTs) as the core cable. Its discharge capacitance as a cathode material for supercapacitors in 0.5 M KOH aqueous solution is 590 F/g at the current density of 15 A/g . Interestingly, such a unique $Co₃O₄(\partial MWCNT)$ nanocable presents not only superior rate performance with the capacitance of 510 F/g at 100 A/g but also good cycling without any capacitance decay, which has never been reported before to our best knowledge. Its excellent electrochemical properties are of great attraction for practical supercapacitors.

EXPERIMENTAL SECTION

The synthesis of the $Co₃O₄(@CNT)$ nanocable (see experimental details in Supporting Information) is schematically presented in Scheme 1. Meanwhile, a pristine $Co₃O₄$ under the same hydrothermal condition [was also prepared as a co](#page-4-0)ntrol.

The prepared $Co₃O₄(\omega MWCNT)$ nanocable or pristine $Co₃O₄$ was mixed with acetylene black and poly(tetrafluoroethylene) (PTFE) in a weight ratio of 8:1:1 with the help of ethanol. After drying, the mixture was pressed into a film with an active mass loading of $~6$ mg/cm². . Next, the film was cut into disks. These disks were pressed onto Ni grid at a pressure of 10 MPa and then dried at 80 °C overnight to act as working electrodes.

The cyclic voltammetry (CV) data were collected at different scan rates on an electrochemical working station CHI440B (Chenhua). A three-electrode cell consisting of the above working electrode, Ni grid as the counter electrode, and SCE as the reference electrode was used to test the charge/discharge behaviors including rate capability and cycling behavior in 0.5 M KOH aqueous solution on a cell tester (Land).

■ RESULTS AND DISCUSSION

Scanning electron micrograph (SEM) and transmission electron micrograph (TEM) of the $Co₃O₄$ -coated MWCNT are shown in Figure 1a,b. Clearly, there are no other $Co₃O₄$ particles except the nanocables. The core MWCNT is uniformly coated with $Co₃O₄$, whose thickness is several nanometers (inset, Figure 1b). The pristine $Co₃O₄$ presents as layered sheets (Figure 1c). According to the X-ray diffraction (XRD) patterns of the MWCNT, the pristine $Co₃O₄$, and the $Co₃O₄(\varnothing MWCNT)$ nanocable shown in Figure 1d, most peaks

Figure 1. Characterization: (a) FESEM and (b) TEM micrographs of the prepared Co_3O_4 @MWCNT nanocable; (c) SEM micrograph of the pristine layered $Co₃O₄$; (d) X-ray diffraction patterns of MWCNT, the pristine $Co₃O₄$, and the $Co₃O₄(\emptyset MWCNT)$ nanocable.

Figure 2. Cyclic voltammetric curves of the prepared materials measured using Ni as the counter electrode and SCE as the reference electrode in 0.5 M KOH aqueous solution: (a) the prepared Co_3O_4 @MWCNT nanocable and the pristine Co_3O_4 at the scan rate of 10 mV/s, (b) the prepared $Co₃O₄(\emptyset)$ MWCNT nanocable, and (c) the pristine $Co₃O₄$ at different scan rates.

Figure 3. Electrochemical characterization of the prepared pristine Co₃O₄ and the Co₃O₄@MWCNT nanocable: Charge/discharge curves of (a) the pristine Co_3O_4 and (b) the nanocable; (c) their capacitance at different current densities; and (d) their cycling behavior.

fit very well except the (220) and (111) planes. In the pristine $Co₃O₄$, the intensity of (311) planes are stronger than that of

the (220) ones, which is similar to the reported Co_3O_4 .¹⁹ In the prepared $Co_3O_4@MWCNT$ nanocables, the intensity of their

(220) planes is evidently stronger than that of (311) planes. This suggests that the $Co₃O₄(\partial MWCNT)$ structure has a crystal orientation along (220) planes. Moreover, MWCNTs consist of the graphene sheets rolled into concentric cylinders, and the $π-3d$ orbital interaction makes it possible for the graphene plane to coordinate with Co atoms. In addition, oxygen can be compatible with the graphene plane because of the existence of −OH and −COOH groups on the surface from the acid treatment. Therefore, $Co₃O₄$ is orientated and deposited onto the MWCNTs by using their surface as the templates. This crystal orientation will play a vital role during the OH[−] ion insertion/extraction process.

The CV curves of the pristine $Co₃O₄$ and the prepared $Co₃O₄(\omega MWCNT)$ nanocable in 0.5 M KOH aqueous electrolyte are shown in Figure 2. The electrochemical windows are adjusted according to the locations of the redox couples. It can be observed that there ar[e](#page-2-0) two redox couples at different scan rates from 5 to 200 mV/s. They are situated at 0.205/0.187 V and 0.484/0.415 V (vs saturated calomel electrode (SCE)), respectively, at 10 mV/s, resulting from the reversible transitions between Co_3O_4 and $CoOOH$ (II/III) and between CoOOH and $CoO₂$ (III/IV). The reactions are presented as eqs 1 and $2.^{27}$

 $Co_3O_4 + OH^- + H_2O \leftrightarrow 3CoOOH + e^-$ (1)

$$
CoOOH + OH^- \leftrightarrow CoO_2 + H_2O + e^-
$$
 (2)

In the case of the pristine $Co₃O₄$, their potential positions are shifted a little. As to the shift or difference, it is due to their different crystal orientation since the crystal phase is the same.^{19,28,29} From the comparison of the CV curves, the areas surrounded by the CV curves at the same scan rates for the nano[cable a](#page-4-0)re dramatically larger than those for the pristine $Co₃O₄$. In the meantime, the MWCNTs contribute nothing to the capacitance increase of the nanocable of $Co₃O₄$ with the MWCNT, which is also evidenced from the charge−discharge plot (Figure S1 in the Supporting Information). These results indicate that a large specific capacitance is associated with the nanocable and suggest [that its capacitance is m](#page-4-0)ainly from the pseudocapacitance of the electrochemically active $Co₃O₄$ instead of double-layer capacitance from the MWCNT. With the increase of the scan rate, the peak separation increases owing to the polarization. However, the peaks retain the welldefined shape even when the scan rate is as high as 200 mV/s. This is superior to the reported $Co₃O₄$.^{18,29–33} This suggests that the nanocable will present excellent rate performance.

The rate capability and cycling behavi[or](#page-4-0) [are](#page-4-0) [sh](#page-5-0)own in Figure 3. The specific capacitance is calculated as eq $3³⁴$

$$
C_{\rm m} = I \cdot t / (\Delta V \cdot m) \tag{3}
$$

[w](#page-2-0)here C_m is the specific capacitance of the electrode (F/g) , I is the charge/discharge current (A) , t is the discharge time (s) , ΔV is the potential window, and m is the mass of the electrochemically active $Co₃O₄$. Each datum was tested with five cells, and the average standard deviation is very small (Table S1 in the Supporting Information). In the case of the nanocable, the weight amount of $Co₃O₄$ is 41.88 wt % examined by ther[mogravimetric analysis \(T](#page-4-0)G, Figure S2 in the Supporting Information). Both of them present a discharge plateau at ∼0.4 V (vs SCE) corresponding to the [pseudocapacitance from](#page-4-0) the redox reactions of $Co₃O₄$, which is similar to the above CV curves. In the case of the pristine $Co₃O₄$, when the current density is as high as 10 A/g, its

discharge time is less than 10 s. In contrast, the nanocable can still discharge more than 30 s when the current density is as high as 15 A/g. The capacitance of the pristine $Co₃O₄$ is less than 130 F/g. As to the nanocable, it can be as high as 590 F/g at 15 A/g, and there is not much capacitance fading; even the current density is as high as 100 A/g (510 F/g). Also, the specific capacitance based on the total weight of the CNT/ $Co₃O₄$ nanocable is 247 F/g at 15 A/ $g³¹$ The superior electrochemical performance of the $Co₃O₄(@MWCNT)$ nanocable is perhaps due to the larger addit[ion](#page-4-0)al amount of MWCNT compared with other work reported.23−²⁶ It is wellknown that MWCNT is uniquely advantageous to serve as a good electronic conductor for the redox reacti[on](#page-4-0)s [to](#page-4-0) promote pseudocapacitance.^{23−26} In the case of this Co₃O₄@MWCNT nanocable, this is evidenced from the Nyquist plots (see Figure S3 in the Support[ing In](#page-4-0)formation), which shows much lower charge-transfer resistance. In addition, the thin $Co₃O₄$ nanoshell mark[edly shortens the reactio](#page-4-0)n distance, which makes the redox reactions utilized as much as possible even when the current density is very large. Also, the preferred orientation of $Co₃O₄$ along the (220) planes in the prepared $Co₃O₄(\varnothing)$ MWCNT nanocable provides more sites vertical to (220) planes. This indicates that the insertion and extraction of OH[−] becomes much easier, which is similar to the promoted intercalation/deintercalation of Li⁺ ions along preferred oriented planes in LiMn₂O₄.^{35−38} As a result, this evident excellent rate capability is superior to the reported $Co₃O₄$. ^{18,30–33,42}

In the case of the cycling behavior, the pristine $Co₃O₄$ shows eviden[t ca](#page-4-0)[pacita](#page-5-0)nce decay after 1700 cycles. As to the nanocable, there is no capacitance decay after 2000 full cycles with high Coulombic efficiency (almost 100%). It is wellknown that during the charge and discharge processes of $Co₃O₄$, there is some volume change leading to strain and stress, which result in its poor cycling behavior. In the case of our prepared Co_3O_4 @MWCNT nanocable, the strain and stress can be buffered due to the thin nanostructure of $Co₃O₄.^{3,39–41}$ By the way, the flexible MWCNT can also buffer the possible change. In addition, the $Co₃O₄$ shell is uniformly deposit[e](#page-4-0)[d](#page-5-0) [on](#page-5-0)to the MWCNT due to the actions of the hydrophilic groups such as −OH and −COOH from the pretreatment of MWCNT with nitric acid, and the combination of $Co₃O₄$ shell with the MWCNT core is very tight, which also leads to stable $Co₃O₄$ shell structure during the cycling. Consequently, the Co_3O_4 (ω MWCNT nanocable shows superior cycling performance to the reported $Co₃O₄$.^{18,19,30–33,42,43}

■ CONCLUSION

In summary, a $Co₃O₄(\partial MWCNT)$ nanocable is in situ prepared by depositing $Co₃O₄$ on MWCNT core through a simple hydrothermal method. The thickness of the $Co₃O₄$ shell is only several nanometers. The nanocable retains the well-defined shapes of the redox reactions in the CV even at the scan rate of 200 mV/s. As a cathode material for supercapacitor in 0.5 M KOH aqueous solution, it presents excellent rate capability since it is capable of delivering high specific capacitance of 590 F/g at 15 A/g and still 510 F/g even at 100 A/g. Its cycling behavior is also very good, with no capacitance decay after 2000 full cycles. Its excellent electrochemical performance, which is better than the pristine and the reported $Co₃O₄$, is due to the electronic conductive MWCNT core, the thin $Co₃O₄$ nanoshell, the stable nanocable structure, and possibly preferred

orientation of $Co₃O₄$ crystal. The $Co₃O₄(\emptyset)$ MWCNT nanocable is of great promise as cathode for practical supercapacitors.

■ ASSOCIATED CONTENT

S Supporting Information

Experimental details, charge−discharge plot of the nanocable of $Co₃O₄$ with MWCNT, the average standard deviation of capacitance, TG of the $Co₃O₄(@MWCNT)$ nanocable, and Niquist plots of the pristine Co_3O_4 and the Co_3O_4 @MWCNT nanocable. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTH[OR INFORMATIO](http://pubs.acs.org)N

Corresponding Authors

*Fax: +86-21-55664223. E-mail: wuyp@fudan.edu.cn. (Y.- P.W.)

*E-mail: iamxliu@njtech.edu.cn. (X.[L.\)](mailto:wuyp@fudan.edu.cn)

Author Contributions

The ma[nuscript was written](mailto:iamxliu@njtech.edu.cn) through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

Financial support from China National Distinguished Young Scientists (NSFC No. 51425301), STCSM (12JC1401200), and Sanyo Chem. Co. Ltd. is greatly appreciated.

■ REFERENCES

(1) Wu, Y. P.; Yuan, X. Y.; Dong, C.; Duan, J. Y. Lithium Ion Batteries: Practice and Applications, 2nd ed.; Chemical Industry Press: Beijing, 2012.

(2) Raja, M. W.; Mahanty, S.; Basu, R. N. Filter Paper Templated Interconnected Nanocrystalline LiMn₂O₄ with High Coulombic Efficiency and Rate Capability. J. Mater. Chem. 2009, 19, 6161.

(3) Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured Materials for Advanced Energy Conversion and Storage Devices. Nat. Mater. 2005, 4, 366−377.

(4) Huang, Y.; Liang, J.; Chen, Y. An Overview of the Applications of Graphene-based Materials in Supercapacitors. Small 2012, 8, 1805– 34.

(5) Zhao, X.; Sanchez, B. M.; Dobson, P. J.; Grant, P. S. The Role of Nanomaterials in Redox-based Supercapacitors for Next Generation Energy Storage Devices. Nanoscale 2011, 3, 839−55.

(6) Jiang, J.; Li, Y.; Liu, J.; Huang, X.; Yuan, C.; Lou, X. W. Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage. Adv. Mater. 2012, 24, 5166−80.

(7) Simon, P.; Gogotsi, Y. Materials for Electrochemical Capacitors. Nat. Mater. 2008, 7, 845−854.

(8) Yuan, C. Z.; Gao, B.; Shen, L. F.; Yang, S. D.; Hao, L.; Lu, X. J.; Zhang, F.; Zhang, L. J.; Zhang, X. G. Hierarchically Structured Carbon-based Composites: Design, Synthesis and their Application in Electrochemical Capacitors. Nanoscale 2011, 3, 529−45.

(9) Zhang, L. L.; Zhao, X. S. Carbon-based Materials as Supercapacitor Electrodes. Chem. Soc. Rev. 2009, 38, 2520−31.

(10) Wang, G.; Zhang, L.; Zhang, J. A Review of Electrode Materials for Electrochemical Supercapacitors. Chem. Soc. Rev. 2012, 41, 797− 828.

(11) Choi, N. S.; Chen, Z.; Freunberger, S. A.; Ji, X.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Challenges facing Lithium Batteries and Electrical Double-layer Capacitors. Angew. Chem., Int. Ed. 2012, 51, 9994−10024.

(12) Hu, C.-C.; Chang, K.-H.; Lin, M.-C.; Wu, Y.-T. Design and Tailoring of the Nanotubular Arrayed Architecture of Hydrous $RuO₂$ for Next Generation Supercapacitors. Nano Lett. 2006, 6, 2690−2695. (13) Zhu, T.; Chen, J. S.; Lou, X. W. Shape-controlled Synthesis of Porous Co₃O₄ Nanostructures for Application in Supercapacitors. J. Mater. Chem. 2010, 20, 7015−7020.

(14) Balaya, P. Size Effects and Nanostructured Materials for Energy Applications. Energy Environ. Sci. 2008, 1, 645−654.

(15) Li, Y.; Tan, B.; Wu, Y. Mesoporous $Co₃O₄$ Nanowire Arrays for Lithium Ion Batteries with High Capacity and Rate Capability. Nano Lett. 2008, 8, 265−270.

(16) Yao, W.-L.; Wang, J.-L.; Yang, J.; Du, G.-D. Novel Carbon Nanofiber-cobalt Oxide Composites for Lithium Storage with Large Capacity and High Reversibility. J. Power Sources 2008, 176, 369−372. (17) Du, N.; Zhang, H.; Chen, B. D.; Wu, J. B.; Ma, X. Y.; Liu, Z. H.; Zhang, Y. Q.; Yang, D. R.; Huang, X. H.; Tu, J. P. Porous $Co₃O₄$ Nanotubes Derived from $Co_4(CO)_{12}$ Clusters on Carbon Nanotube Templates: A Highly Efficient Material for Li-Battery Applications. Adv. Mater. 2007, 19, 4505−4509.

(18) Wu, Z.-S.; Ren, W.; Wen, L.; Gao, L.; Zhao, J.; Chen, Z.; Zhou, G.; Li, F.; Cheng, H.-M. Graphene Anchored with $Co₃O₄$ Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance. ACS Nano 2010, 4, 3187−3194.

(19) Dong, X.-C.; Xu, H.; Wang, X.-W.; Huang, Y.-X.; Chan-Park, M. B.; Zhang, H.; Wang, L.-H.; Huang, W.; Chen, P. 3D Graphene-Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection. ACS Nano 2012, 6, 3206−3213.

(20) Xia, X.; Chao, D.; Fan, Z.; Guan, C.; Cao, X.; Zhang, H.; Fan, H. J. A New Type of Porous Graphite Foams and their Integrated Composites with Oxide/polymer Core/shell Nanowires for Supercapacitors: Structural design, Fabrication, and Full Supercapacitor Demonstrations. Nano Lett. 2014, 14, 1651−8.

(21) Wu, Z.-S.; Zhou, G.; Yin, L.-C.; Ren, W.; Li, F.; Cheng, H.-M. Graphene/metal Oxide Composite Electrode Materials for Energy Storage. Nano Energy 2012, 1, 107−131.

(22) Lee, J. W.; Hall, A. S.; Kim, J.-D.; Mallouk, T. E. A Facile and Template-Free Hydrothermal Synthesis of Mn_3O_4 Nanorods on Graphene Sheets for Supercapacitor Electrodes with Long Cycle Stability. Chem. Mater. 2012, 24, 1158−1164.

(23) Jiang, Y.; Wang, P.; Zang, X.; Yang, Y.; Kozinda, A.; Lin, L. Uniformly Embedded Metal Oxide Nanoparticles in Vertically Aligned Carbon Nanotube Forests as Pseudocapacitor Electrodes for Enhanced Energy Storage. Nano Lett. 2013, 13, 3524−30.

(24) Corso, B. L.; Perez, I.; Sheps, T.; Sims, P. C.; Gul, O. T.; Collins, P. G. Electrochemical Charge-transfer Resistance in Carbon Nanotube Composites. Nano Lett. 2014, 14, 1329−36.

(25) Shan, Y.; Gao, L. Multiwalled Carbon Nanotubes/ $Co₃O₄$ Nanocomposites and Its Electrochemical Performance in Lithium Storage. Chem. Lett. 2004, 33, 1560−1561.

(26) Shan, Y.; Gao, L. Formation and Characterization of Multiwalled Carbon Nanotubes/ $Co₃O₄$ Nanocomposites for Supercapacitors. Mater. Chem. Phys. 2007, 103, 206−210.

(27) Casella, I. G.; Gatta, M. Study of the Electrochemical Deposition and Properties of Cobalt Oxide Species in Citrate Alkaline Solutions. J. Electroanal. Chem. 2002, 534, 31−38.

(28) Mazloumi, M.; Shadmehr, S.; Rangom, Y.; Nazar, L. F.; Tang, X. Fabrication of Three-Dimensional Carbon Nanotube and Metal Oxide Hybrid Mesoporous Architectures. ACS Nano 2013, 7, 4281−4288.

(29) Wang, Y.; Lei, Y.; Li, J.; Gu, L.; Yuan, H.; Xiao, D. Synthesis of 3D-Nanonet Hollow Structured $Co₃O₄$ for High Capacity Supercapacitor. ACS Appl. Mater. Interfaces 2014, 6, 6739−6747.

(30) Meher, S. K.; Rao, G. R. Ultralayered $Co₃O₄$ for High-Performance Supercapacitor Applications. J. Phys. Chem. C 2011, 115, 15646−15654.

(31) Yuan, C.; Yang, L.; Hou, L.; Li, J.; Sun, Y.; Zhang, X.; Shen, L.; Lu, X.; Xiong, S.; Lou, X. W. D. Flexible Hybrid Paper Made of Monolayer $Co₃O₄$ Microsphere Arrays on rGO/CNTs and Their Application in Electrochemical Capacitors. Adv. Funct. Mater. 2012, 22, 2560−2566.

(32) Cai, D.; Wang, D.; Liu, B.; Wang, L.; Liu, Y.; Li, H.; Wang, Y.; Li, Q.; Wang, T. Three-Dimensional Co₃O₄@NiMoO₄ Core/Shell Nanowire Arrays on Ni Foam for Electrochemical Energy Storage. ACS Appl. Mater. Interfaces 2014, 6, 5050−5.

(33) Wang, Y.; Zhong, Z.; Chen, Y.; Ng, C. T.; Lin, J. Controllable Synthesis of $Co₃O₄$ from Nanosize to Microsize with Large-scale Exposure of Active Crystal Planes and their Excellent Rate Capability in Supercapacitors Based on the Crystal Plane Effect. Nano Res. 2011, 4, 695−704.

(34) Liu, C. G.; Yu, Z. N.; Neff, D.; Zhamu, A.; Jang, B. Z. Graphene-Based Supercapacitor with an Ultrahigh Energy Density. Nano Lett. 2010, 10, 4863−4868.

(35) Tang, W.; Hou, Y. Y.; Wang, F. X.; Liu, L. L.; Wu, Y. P.; Zhu, K. LiMn₂O₄ Nanotube as Cathode Material of Second-Level Charge Capability for Aqueous Rechargeable Batteries. Nano Lett. 2013, 13, 2036−2040.

(36) Wang, L.; He, X. M.; Sun, W. T.; Wang, J. L.; Li, Y. D.; Fan, S. S. Crystal Orientation Tuning of LiFePO₄ Nanoplates for High Rate Lithium Battery Cathode Materials. Nano Lett. 2012, 12, 5632−5636.

(37) Hosono, E.; Kudo, T.; Honma, I.; Matsuda, H.; Zhou, H. S. Synthesis of Single Crystalline Spinel $LiMn₂O₄$ Nanowires for a Lithium Ion Battery with High Power Density. Nano Lett. 2009, 9, 1045−1051.

(38) Kim, J. S.; Kim, K. S.; Cho, W.; Shin, W. H.; Kanno, R.; Choi, J. W. A Truncated Manganese Spinel Cathode for Excellent Power and Lifetime in Lithium-Ion Batteries. Nano Lett. 2012, 12, 6358−6365.

(39) Maier, J. Nanoionics: Ion Transport and Electrochemical Storage in Confined Systems. Nat. Mater. 2005, 4, 805−815.

(40) Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. A Hybridization Model for the Plasmon Response of Complex Nanostructures. Science 2003, 302, 419−422.

(41) Li, J.; Tang, S. B.; Lu, L.; Zeng, H. C. Preparation of Nanocomposites of Metals, Metal Oxides, and Carbon Nanotubes via Self-Assembly. J. Am. Chem. Soc. 2007, 129, 9401−9409.

(42) Abdolmaleki, A.; Kazerooni, H.; Gholivand, M. B.; Heydari, H.; Pendashteh, A. Facile Electrostatic Coprecipitation of f-SWCNT/ Co3O4 Nanocomposite as Supercapacitor Material. Ionics 2014, DOI: 10.1007/s11581-014-1173-5.

(43) Gong, L. Y.; Su, L. H. Facile Synthesis of Cobalt Oxide Uniformly Coated on Multi-wall Carbon Nanotubes for Supercapacitors. Adv. Mater. Res. 2011, 306−307, 1148.